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a b s t r a c t 

Prior work on Alzheimer’s Disease (AD) has demonstrated that convolutional neural networks (CNNs) can lever- 

age the high-dimensional image information for diagnosing patients. Beside such data-driven approaches, many 

established biomarkers exist and are typically represented as tabular data, such as demographics, genetic alter- 

ations, or laboratory measurements from cerebrospinal fluid. However, little research has focused on the effec- 

tive integration of tabular data into existing CNN architectures to improve patient diagnosis. We introduce the 

Dynamic Affine Feature Map Transform (DAFT), a general-purpose module for CNNs that incites or represses 

high-level concepts learned from a 3D image by conditioning feature maps of a convolutional layer on both a pa- 

tient’s image and tabular clinical information. This is achieved by using an auxiliary neural network that outputs 

a scaling factor and offset to dynamically apply an affine transformation to the feature maps of a convolutional 

layer. In our experiments on AD diagnosis and time-to-dementia prediction, we show that the DAFT is highly 

effective in combining 3D image and tabular information by achieving a mean balanced accuracy of 0.622 for 

diagnosis, and mean c -index of 0.748 for time-to-dementia prediction, thus outperforming all baseline methods. 

Finally, our extensive ablation study and empirical experiments reveal that the performance improvement due 

to the DAFT is robust with respect to many design choices. 
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. Introduction 

Over the last decade, deep convolutional neural networks (CNNs)

ave become a staple for classification of Alzheimer’s Disease

AD) from brain images acquired by magnetic resonance imaging

MRI) ( Ebrahimighahnavieh et al., 2020 ). While CNNs excel at extract-

ng abstract high-level representations of neuroanatomy from MRI, brain

RI only offers a limited view on the underlying changes causing cog-

itive decline ( Jack et al., 2013 ). Thus, reliably diagnosing AD requires

ncorporating tabular data such as patient demographics, family history,

r laboratory measurements from cerebrospinal fluid. Typically, tabular

ata are low-dimensional and individual variables capture rich clinical

nowledge. However, the statistical properties of tabular variables can

ary: laboratory measurements are continuous, the family history is a

inary indicator, genetic alterations are counts, and a person’s smoking

abits are ordinal (e.g. frequent versus occasional smoking). In contrast,
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mage information is continuous-valued, high-dimensional, and carries

ittle information on a per-voxel level. 

Due to image and tabular data often describing complementary as-

ects of the disease, we want to conjoin the two in a single neural net-

ork such that redundancies are avoided. For example, if a CNN extracts

 feature from a patient’s brain MRI that corresponds to the patient’s

ge, the CNN extracted information that is readily available through

abular data. Ideally, a network should utilize both sources of informa-

ion in a way that one source can inform the other and the network’s

rediction capability is enhanced. However, the capacity required to ex-

ract high-level information of image data exceeds the capacity required

o summarize the tabular data by several orders of magnitude. Hence,

raining such a network implicitly encourages the network to prioritize

hanges in image-related parameters. Ultimately, models taking into ac-

ount heterogeneous data perform only marginally better than unimodal

NNs ( Pelka et al., 2020 ). 
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Deep learning approaches most commonly integrate image and tab-

lar data naively by concatenation of latent feature vectors. To this end,

abular data is concatenated with a high-level image descriptor pro-

uced by a CNN, and fed through the final (fully-connected) layers of

he network ( Esmaeilzadeh et al., 2018; Hao et al., 2019; Kopper et al.,

021; Liu et al., 2019; Mobadersany et al., 2018; Pölsterl et al., 2020 ).

his approach limits the way the image-specific part of the network can

nteract with the tabular-specific part of the network and vice versa. In-

tead, we seek an architecture where tight interaction between image

nd tabular data enables the network to truly view image information

n the context of the tabular information, and a two-way exchange of

nformation is initiated. 

In this work, we propose to fuse information from a patient’s 3D

rain MRI and tabular data via the Dynamic Affine Feature Map Trans-

orm (DAFT). The DAFT dynamically scales and shifts the feature maps

n a convolutional layer via an auxiliary neural network that amalga-

ates image and tabular information. It is a generic module that can be

asily incorporated in any type of CNN to establish a bidirectional ex-

hange of information between data types. In our extensive experiments

n AD diagnosis and time-to-dementia analysis, we compare the DAFT

o three unimodal baselines, and five competing deep neural networks

hat fuse image and tabular information, and are evaluated with two dif-

erent backbone architectures. The results demonstrate that DAFT out-

erforms all competing methods by a large margin: +0.021 balanced

ccuracy in the AD diagnosis task, and +0.019 concordance index in

he time-to-dementia task. Finally, our ablation study and empirical ex-

eriments show that the DAFT is robust to various architectural changes

nd leads to improved prediction accuracy over baseline methods with-

ut the need of extensive hyper-parameter tuning. 

The remainder of this paper is organized as follows. In Section 2 ,

e discuss related work on deep neural networks to combine image and

abular data. In Section 3 , we propose the DAFT for improved integra-

ion of image and tabular data, describe the data from the Alzheimer’s

isease Neuroimaging Initiative used in our experiments, and present

ur evaluation scheme. The results and discussion of our experimental

esults on AD diagnosis and time-to-dementia diagnosis are presented

n Section 4 . Finally, we end with concluding remarks in Section 5 . 

. Related work 

A straight-forward way to combine image and tabular data is a two

tage approach where one first trains a CNN on the image data alone,

nd then concatenates its predictions or latent representations with the

abular data to finally fit a separate linear model on the combined fea-

ure vectors. The authors of Li et al. (2019) followed this approach to

use information from brain MRI and routinely acquired clinical mark-

rs to predict progression to AD. However, their two-step process does

ot fully utilize the CNN, because it does not consider that the learned

mage descriptor could contain information that is redundant to the tab-

lar information. 

This motivated others to propose end-to-end models, where the la-

ent image representation is concatenated with the clinical information

efore the last fully connected (FC) layer. Hao et al. (2019) followed

uch an approach to train a single CNN that fuses histopathology images,

enomic data, and demographics for survival prediction. The works in

opper et al. (2021) ; Pölsterl et al. (2020) followed a similar approach

o fuse a point cloud representation of the hippocampus with clinical

arkers for time-to-dementia prediction. The downside of such an ap-

roach is that the tabular data is limited to a linear contribution to the

nal prediction, unless non-linearities are modeled explicitly (e.g. via

-spline transformations). 

This issue can be overcome by replacing the single FC layer, which

ombines image and tabular data, with a multilayer perceptron (MLP)

uch that non-linear relationships can be learned implicitly. Such a

etwork was proposed by Mobadersany et al. (2018) to predict over-

ll survival of patients diagnosed with glioma from digital pathol-
2 
gy images and genomic data, and by Esmaeilzadeh et al. (2018) ;

iu et al. (2019) for AD diagnosis from brain MRI and clinical markers.

 minor modification of this approach uses an additional MLP that is

pplied solely on the tabular data before concatenation with the latent

mage representation ( El-Sappagh et al., 2020; Li et al., 2020; Spasov

t al., 2019 ). However, adding additional FC layers increases the num-

er of trainable parameters considerably, which can render the network

ore susceptible to over-fitting. During inference, the tabular informa-

ion only interacts with the global image descriptor in concatenation-

ased approaches, which does not allow for fine-grained interactions on

he voxel- or patch level. To our assumption, interactions on the voxel-

r patch level improve the quality of image-features, which is evident

rom our results. 

Braman et al. (2021) proposed to tackle aforementioned issues by

using latent representations of three deep modality-specific subnet-

orks via an attention-gated tensor fusion process, and applying a

enalty term that encourages the modality-specific latent representa-

ions to be orthogonal. They fuse MRI, histopathology images, genomic

ata, and clinical information to predict overall survival of glioma pa-

ients. Duanmu et al. (2020) proposed an alternative approach. They

use information in a multiplicative manner to predict response to

hemotherapy. Their approach uses an auxiliary network that takes the

abular data and outputs a scalar scaling factor to rescale the feature

aps of every other convolutional layer of a CNN. This results in an

mplification or repression of latent image feature maps that is con-

itional on the patient’s tabular information. However, the size of their

uxiliary network scales quadratically with the depth of the CNN, which

n turn increases the runtime and memory requirements dramatically. 

Perez et al. (2018) introduced the Feature-wise Linear Modulation

FiLM) layer for visual question answering in computer vision. Similar

o the work by Duanmu et al. (2020) , FiLM uses an auxiliary network,

ut in addition to the scaling factor, also outputs an offset to shift feature

aps by. Therefore, the auxiliary network in FiLM can affinely trans-

orm each feature map of a convolutional layer, similar to our approach.

he only application of FiLM to the medical domain was presented in

acenków et al. (2020) to segment the myocardium and ventricular cav-

ties conditional on the slice position and the phase of the cardiac cycle.

ote that the premise of the two approaches above is very different from

urs. In visual question answering and image segmentation, the meta

nformation (question or cardiac cycle) is fundamentally related to the

mage content, because in both settings the meta information refers to

 property of the image. Therefore, conditioning the CNN on the meta

nformation, but not vice versa, is a reasonable approach. In contrast, in

ur work, the interrelation of image and tabular data is much weaker,

hich is why we argue that a bidirectional flow of information is pre-

erred. In the proposed DAFT, feature maps are scaled and shifted, as

n FiLM ( Perez et al., 2018 ), but we make this transformation condi-

ional on image and tabular data such that one source of information

an inform the other. 

A preliminary version of this work has been presented at a conference

 Pölsterl et al., 2021 ). Here, we extend this work by providing more de-

ails on the technical aspects of DAFT, and extending the experimental

valuation with more metrics, an analysis of the contribution of indi-

idual tabular features on the predictive performance, and additional

xperiments to showcase that DAFT generalizes better than previous

pproaches. 

. Materials and methods 

.1. The dynamic affine feature map transform 

By design, CNNs excel at extracting task-specific descriptors of high-

imensional 3D image data. Here, our aim is to use an existing CNN

rchitecture and augment it with a versatile module to achieve seam-

ess integration of low-dimensional tabular data such that the CNN can

everage this complementary information for improved prediction. Com-
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Fig. 1. Overview of the proposed network architecture. A: The backbone of our proposed network architecture is a ResNet, where the Dynamic Affine Feature Map 

Transform (DAFT) is applied in the last residual block. B: For each instance 𝑖 in a batch, the DAFT first squeezes the spatial dimensions of a feature map 𝐅 𝑖 of size 

𝐶 ×𝐷 ×𝐻 ×𝑊 via global average pooling. Next, the resulting vector is concatenated with the vector 𝐱 𝑖 ∈ ℝ 

𝑃 of tabular information. The result is fed to a set of 

fully-connected layers with intermediate ReLU activation that compress the feature vector by a factor 𝑟 (throughout this work, we use 𝑟 = 7 ). The output is a vector 

of scales 𝜶𝑖 ∈ ℝ 

𝐶 , and offsets 𝜷 𝑖 ∈ ℝ 

𝐶 , which are used to affinely transform the input feature maps 𝐅 𝑖,𝑐 , yielding 𝐅 ′
𝑖,𝑐 

( 𝑐 = 1 , … , 𝐶). C: A standard ResBlock with 

down-sampling via strided convolutions. If the number of input feature maps equals the number of output feature maps, no downsampling is performed and the 

residual connection contains no convolutional nor batch norm layer. 
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on tabular information, such as demographics or aggregate statistics,

escribe the patient’s state holistically, thus, a level exchange of infor-

ation between image and tabular data is required. Since early layers

f a CNN typically describe rather primitive concepts (e.g. edges, blobs),

e propose to transform the feature maps of a 3D convolutional layer

hat appears late in the CNN and captures broad concepts in the image.

e select a ResNet ( He et al., 2016 ) as the backbone of our approach,

s it is the most common backbone architecture used in previous work.

e propose to dynamically scale and shift the feature maps of a 3D

onvolutional layer in the last residual block, conditional on a patient’s

rain MRI and clinical tabular information. Our full network design is

ummarized in Fig. 1 . 

Formally, let 𝐱 𝑖 ∈ ℝ 

𝑃 denote the tabular clinical information for the

 th instance in the dataset and 𝐅 𝑖,𝑐 ∈ ℝ 

𝐷×𝐻×𝑊 the 𝑐th output (feature

ap) of a 3D convolutional layer based on the 𝑖 th volumetric image

 𝑐 ∈ {1 , … , 𝐶} and 𝑃 denotes the number of tabular features, 𝐷, 𝐻, 𝑊 

he depth, height, and width of the feature map). The ability to incite

r repress high-level concepts learned from the image is achieved by

onditioning the outputs 𝐅 𝑖,𝑐 of a convolutional layer on the image and
3 
abular data. For this purpose, the Dynamic Affine Feature Map Trans-

orm (DAFT) learns to predict scale 𝛼𝑖,𝑐 and offset 𝛽𝑖,𝑐 : 

 

′
𝑖,𝑐 

= 𝛼𝑖,𝑐 𝐅 𝑖,𝑐 + 𝛽𝑖,𝑐 , (1) 

𝑖,𝑐 = 𝑓 𝑐 ( 𝐅 𝑖,𝑐 , 𝐱 𝑖 ) , 𝛽𝑖,𝑐 = 𝑔 𝑐 ( 𝐅 𝑖,𝑐 , 𝐱 𝑖 ) , (2) 

here 𝑓 𝑐 , 𝑔 𝑐 are arbitrary mappings from image and tabular space to a

calar. In our work, a single auxiliary neural network ℎ 𝑐 models 𝑓 𝑐 , 𝑔 𝑐 
nd outputs a single 

− 𝜷

pair, which is referred to as DAFT, visually represented in Fig. 1 B. 

First, DAFT creates a bottleneck via global average pooling of the

patial dimensions of the image feature map. Next, the resulting vec-

or is concatenated with the tabular data. This combined vector is

queezed by an FC layer with a bottleneck and fed through a ReLU

on-linearity ( Nair and Hinton, 2010 ). A second FC layer expands the

queezed vector and yields the output vectors 𝜶 and 𝜷 ; motivated
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y Hu et al. (2020) , we do not add bias terms to FC layers in the aux-

liary network. In addition, we allow applying a non-linear activation

unction 𝜎( ⋅) to 𝛼𝑖,𝑐 , such that the scaling factors can be restricted to a

articular domain (e.g. [0; 1] for sigmoid activation). In our experiments,

e explore three options: linear, sigmoid and tanh. 

As the proposed DAFT does not depend on the number of instances in

he dataset, nor the spatial resolution of the feature map, it is computa-

ionally efficient. Due to parameter sharing, DAFT is able to dynamically

cale (via 𝛼𝑖,𝑐 ) and shift (via 𝛽𝑖,𝑐 ) feature maps of a convolutional layer,

onditional on the specific image and tabular information of the 𝑖 th pa-

ient. Moreover, our proposed DAFT is a versatile module that can be

ffortlessly applied to any type of CNN to fuse tabular information, not

ust the CNN in Fig. 1 A, which we demonstrate in Section 4.6 . 

.2. Network training 

In this work, DAFT is evaluated on two tasks using T1 brain MRI.

he first one is to diagnose patients as cognitively normal (CN), mild

ognitively impaired (MCI), or demented (AD). The second task is to

redict time of dementia onset for patients of the MCI cohort. The di-

gnosis task can be formulated as a multi-class classification problem,

hich means we can minimize the standard cross-entropy loss during

raining. 

In the time-to-dementia task, we have to account for the fact that

nly a subset of patients has been observed to convert from MCI to AD.

or the remaining patients, we did not observe the time of conversion.

nstead, the time of their last follow-up visit is a lower bound on the time

f conversion: their time of conversion is right censored . Let 𝑡 𝑖 > 0 denote

he time of conversion to AD and 𝑐 𝑖 > 0 the time of right censoring for

he 𝑖 th patient. In practice, we can only observe patients that converted

hile participating in the study ( 𝑡 𝑖 < 𝑐 𝑖 ). Therefore, the observable time

s defined as 𝑦 𝑖 = min ( 𝑡 𝑖 , 𝑐 𝑖 ) , and 𝛿𝑖 = 𝐼( 𝑡 𝑖 ≤ 𝑐 𝑖 ) is a binary event indicator.

e account for right censored conversion times, by minimizing the neg-

tive partial log-likelihood of Cox’s model ( Faraggi and Simon, 1995 ) –

raditionally used in survival analysis. Let 𝑀( 𝐈 , 𝐱 |𝚯) denote the pre-

icted risk score of conversion, based on image 𝐈 and tabular data 𝐱,

hen we update the network’s parameters 𝚯 by solving 

in 
𝚯

𝐵 ∑
𝑖 =1 

𝛿𝑖 
[
𝑀( 𝐈 𝑖 , 𝐱 𝑖 |𝚯) − log 

( ∑
𝑗∈ 𝑖 

exp ( 𝑀( 𝐈 𝑗 , 𝐱 𝑗 |𝚯)) 

) ] 

, (3)

here 𝐵 is the batch size, and  𝑖 = { 𝑗 | 𝑦 𝑗 ≥ 𝑡 𝑖 } denotes the set of pa-

ients who remained MCI shortly before time point 𝑡 𝑖 . 

In both tasks, we minimize the respective loss with mini-batch

tochastic gradient descent using the AdamW optimizer, which has been

hown to be superior to plain Adam ( Loshchilov and Hutter, 2019 ).

iagnosis and progression tasks are trained for 30 and 80 epochs, re-

pectively. Additionally, we apply a learning rate scheduler: The learn-

ng rate is decreased by a factor of 10 after 60% of epochs are fin-

shed. After 90% of epochs, the initial learning rate is decreased by

 factor of 20. We carry out a grid search on the validation set to

elect the best configuration of learning rate and weight decay. For

ach model, we evaluate a total of 5 × 3 configurations: Learning rate

{0 . 03 , 0 . 013 , 0 . 0055 , 0 . 0023 , 10 −3 } and weight decay ∈ {0 , 10 −4 , 10 −2 }
nd ∈ {10 −3 , 10 −2 , 0 . 1} for the diagnosis and time-to-dementia task, re-

pectively. 

.3. Dataset 

Data used in the preparation of this article were obtained from

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

adni.loni.usc.edu) and AIBL (aibl.csiro.au). The ADNI was launched

n 2003 as a public-private partnership, led by Principal Investigator

ichael W. Weiner, MD. The primary goal of ADNI has been to test

hether serial magnetic resonance imaging, positron emission tomog-

aphy (PET), other biological markers, and clinical and neuropsycho-

ogical assessment can be combined to measure the progression of mild
4 
ognitive impairment and early Alzheimer’s disease. For up-to-date in-

ormation, see www.adni-info.org . 

For the time-to-dementia task, only patients that were classified as

CI during their baseline visits are included. Additionally, patients with

i-directional change in diagnosis over time are excluded, because their

iagnoses can be considered unreliable ( Wen et al., 2020 ). 

Table 1 summarizes the data used in our experiments. 

.4. Data processing 

.4.1. Image data 

T1-weighted MRI are obtained from the ADNI study ( Jack et al.,

008 ). Brain MRI scans are first normalized with the minimal pre-

rocessing pipeline introduced in Wen et al. (2020) . Next, images are

egmented with FreeSurfer 5.3 ( Fischl, 2012 ), yielding an extracted re-

ion of interest of size 64 3 around the left hippocampus, which is known

o be strongly affected by AD ( Frisoni et al., 2008 ). 

.4.2. Tabular data 

For tabular data, the nine selected variables are: ApoE4, cere-

rospinal fluid biomarkers A 𝛽42 , P-tau181 and T-tau, the demographic

ariables age, gender, education, and two measures derived as a sum-

ary from 18F-fluorodeoxyglucose (FDG) and florbetapir (AV45) PET

cans. As some biomarkers were not acquired at all times, miss-

ng values are accounted for by adopting an approach similar to

arrett et al. (2020) : we append binary variables that indicate if a fea-

ure is missing for each tabular feature, with the exception of age, gen-

er, and education, which have no missing values. This enables the net-

ork to learn from incomplete data and patterns of missingness. The

esulting tabular data consists of 𝑃 = 15 features. For the experiments

n Section 4.5 , we select the tabular features that are available in both

DNI and AIBL, i.e. ApoE4, age, gender. An additional binary missing

ariable indicator for ApoE4 is added, resulting in a total of four tabular

eatures. 

.4.3. Splitting of data 

As demonstrated by Wen et al. (2020) , data leakage and confounding

ffects due to age and sex must be considered carefully to avoid biased

valuation results. Hence, we split the data into five non-overlapping

olds using only baseline visits such that diagnosis, age and sex are bal-

nced across folds. To this end, we assess the balance of a split by com-

uting the propensity score, i.e. the probability of a sample belonging

o the training data, based on a logistic regression model comprising the

nown confounders age, sex, and education ( Barnes et al., 2010; Stern

t al., 2020 ). Next, we compare the percentiles of the propensity score

istribution in the training and test data and use the maximum devia-

ion across all percentiles as a measure of imbalance ( Ho et al., 2007 ).

or each of the five folds, this process is repeated for 1000 randomly

elected partitions and the partition with the minimum imbalance is ul-

imately the selected split. 

Each of the five folds serves as a test set once. The remaining folds

re again partitioned into five balanced chunks, out of which one is

andomly selected as the validation set and the remaining data as the

raining set. Thus, the resulting size of data splits is 20% test set, 16%

alidation set and 64% training set. For the diagnosis task, the train-

ng set is extended by including each patient’s longitudinal data as in

en et al. (2020) ( 3 . 49 ± 2 . 56 visits per patient; validation and test sets

emain unchanged). 

.5. Baseline methods 

We compare against two unimodal baselines: (i) a ResNet ( He et al.,

016 ) that uses image information only – using the architecture shown

n Fig. 1 A, but where the DAFT-ResBlock is replaced with a standard

esBlock – and (ii) a linear model that uses tabular information only. Ad-

itionally, we compare against a two-stage approach, where we first ex-

ract the latent image representations from the aforementioned ResNet,

http://www.adni-info.org
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Table 1 

Dataset statistics at initial visit. ± indicates the standard deviation within the dataset. 

Task Subjects Age Sex (male) Education MMSE Diagnosis 

Diagnosis 1341 73 . 9 ± 7 . 2 51.8% 15 . 9 ± 2 . 9 27 . 2 ± 2 . 7 Dementia (19.6%), MCI (40.1%), CN (40.3%) 

Progression 755 73 . 5 ± 7 . 3 60.4% 15 . 9 ± 2 . 9 27 . 5 ± 1 . 8 Progressor (37.4%), median follow-up time 2.01 years 

AIBL 653 72 . 9 ± 6 . 6 43.6% N/A 27 . 5 ± 3 . 5 Dementia (11.6%), MCI (15.5%), CN (72.9%) 

Table 2 

Number of parameters for each model. We report the addi- 

tional number of parameters for neural networks with respect 

to ResNet, indicated with ‘ + ’. 

Parameters 

Model Diagnosis Progression 

Linear Model 48 14 

ResNet 56,535 56,469 

Concat-1FC + 45 + 14 

Concat-2FC + 108 + 160 

1FC-Concat-1FC + 76 + 64 

Duanmu et al. (2020) + 328 + 320 

FiLM ( Perez et al., 2018 ) + 188 + 184 

DAFT + 252 + 248 
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hich is subsequently combined with the tabular data in a linear model

Linear model /w ResNet features). In the diagnosis task, the linear

odel is a multinomial logistic regression, in the time-to-dementia task,

ox’s proportional hazards model ( Cox, 1972 ). Note that we performed

xperiments with gradient boosted models too, but they did not show

ny improvement over a linear model and are therefore not considered

n this work. 

Moreover, we evaluate three networks as baselines that fuse image

nd tabular data by concatenation and are derived from the architec-

ure of the ResNet in Fig. 1 A by replacing the DAFT-ResBlock with a

tandard ResBlock. In the first network, Concat-1FC, the latent image

eature vector, which is the output of the global average pooling layer

fter the last ResBlock, is concatenated with the tabular data vector and

ed directly to the final classification layer. It only models tabular data

inearly, thus it is related to the linear model baseline with the advan-

age that it simultaneously learns an image descriptor. In the second

aseline network, Concat-2FC, the concatenated vector is created the

ame as in Concat-1FC, but it is fed to a two-layer FC bottleneck with

ntermediate ReLU non-linearity (similar to Esmaeilzadeh et al., 2018;

iu et al., 2019 ). The third concatenation-based baseline, 1FC-Concat-

FC, is inspired by Spasov et al. (2019) and feeds the tabular data to

 two-layer FC bottleneck layer before concatenating it with the latent

mage representation, as in Concat-1FC. 

Finally, we compare against two approaches that fuse tabular data

y inciting or repressing feature maps of a convolutional layer condi-

ional on tabular information, that means they only establish a one-

ay exchange of information between data types. One follows the net-

ork design introduced by Duanmu et al. (2020) , the other the one by

erez et al. (2018) . The former scales feature maps of every other convo-

utional layer via multiplication, the latter scales and shifts the feature

aps of one convolutional layer in the last residual block via Feature-

ise Linear Modulation (FiLM). Four of the networks (Concat-2FC, 1FC-

oncat-1FC, FiLM and DAFT) contain a bottleneck layer. We compress

he input vector to 4 dimensions, approximately a fourth of the number

f tabular features. We use the identity function 𝜎( 𝑥 ) = 𝑥 in the auxil-

ary network for the scale 𝛼𝑖,𝑐 in FiLM and DAFT. The implementation of

ll models is available at https://github.com/ai-med/DAFT and Table 2

eports the number of parameters for each of the different models. 

.6. Evaluation metrics 

For each model, we report the performance on the test set after early

topping on the validation set. In the diagnosis task, we evaluate mod-
5 
ls’ performance using the balanced accuracy (bACC; Brodersen et al.,

010 ), which accounts for class imbalance. Additionally, we report the

icro- and macro-averaged F1 score, and the true positive fraction per

lass (TPF), which extends sensitivity and specificity to multi-class clas-

ification ( Bron et al., 2015 ). The class prediction in the multi-class clas-

ification is achieved via extraction of the max probability. In the time-

o-dementia task, we evaluate models in terms of discrimination and

alibration. We assess discrimination using an inverse probability of cen-

oring weighted estimator of the concordance index ( c -index; Uno et al.,

011 ). The c -index is identical to the area under the receiver operat-

ng characteristics curve in case of a binary outcome without censoring.

oreover, we compute the integrated time-dependent Brier score (IBS;

raf et al., 1999 ), which is a measure of both discrimination and cal-

bration. The time-dependent Brier score at time 𝑡 is an extension of

he mean squared error to right censored data. It is complementing the

 -index, because it measures the average difference between the true

rogression status and the estimated risk of progression, whereas the

 -index only assesses whether the ordering by predicted risk scores is

oncordant with the ordering by true progression times. We report the

rier score integrated over 31 time points – roughly 1 month apart –

etween the 6th and 36th month from the first MCI diagnosis. The c -

ndex and IBS are estimated using their implementation in scikit-survival

.13.1 ( Pölsterl, 2020 ). 

. Results and discussion 

.1. Predictive performance 

The predictive performance for the diagnosis task (balanced accu-

acy, true positive fraction, micro- and macro-averaged F1 score) is sum-

arized in Tables 3 and 4 , and for the time-to-dementia task (c-index,

BS) in Table 5 . 

The results demonstrate that a linear model, that only uses tabu-

ar data, outperforms the unimodal, image-based ResNet across all tasks

nd metrics. This matches our expectation, because tabular data contain

myloid-specific measures that are derived from cerebrospinal fluid and

ET imaging, which typically become abnormal before atrophy becomes

isible in MRI ( Jack et al., 2013 ). Furthermore, the predictive perfor-

ance does not increase significantly if image descriptors are learned

ndependently and combined subsequently in a second model (third row

n Tables 3–5 ). This result is evidence that the image descriptor com-

rises information that is at least partially redundant to the clinical in-

ormation. 

In contrast, all concatenation-based networks successfully extract

omplementary image information in the diagnosis task, with an in-

rease in average bACC by at least 0.024 over the Linear Model. More-

ver, predicting the MCI class correctly remains difficult, with only

oncat-1FC achieving a higher TPF than the linear model with ResNet

eatures (0.037 higher TPF MCI ). This is in line with results on the CAD-

ementia challenge, were the winning entry in terms of accuracy only

btained a TPF MCI of 0.287 ( Bron, et al., 2015 ). The worst performing

etwork that models the tabular data in a non-linear manner, is the one

y Duanmu et al. (2020) . In terms of bACC, it performs worse than all

odels, except Concat-1FC. The TPF values reveal that the network can

nly adequately identify healthy controls ( TPF CN = 0 . 774 ), but struggles

ith the remaining classes ( TPF MCI = 0 . 470 , TPF AD = 0 . 490 ). However,

he model of Duanmu et al. (2020) outperforms the FiLM-based model

https://github.com/ai-med/DAFT


T.N. Wolf, S. Pölsterl and C. Wachinger NeuroImage 260 (2022) 119505 

Table 3 

Predictive performance for the diagnosis task (true positive fraction and balanced accuracy). We report the mean and standard 

deviation across five folds. Higher values are better. The use of data of each model is indicated in columns 2–3 (I = the use of 

image data; T = use of tabular data). L/NL denote the linearity of the model for the tabular data transform (linear/non-linear). 

True positive fraction (testing) ↑ Balanced accuracy ↑ 

I T CN MCI AD Validation Testing 

Linear Model ✗ L 0 . 721 ± 0 . 048 0 . 533 ± 0 . 054 0 . 403 ± 0 . 040 0 . 571 ± 0 . 024 0 . 552 ± 0 . 020 
ResNet 

√
✗ 0 . 597 ± 0 . 117 0 . 370 ± 0 . 121 0 . 544 ± 0 . 116 0 . 568 ± 0 . 015 0 . 504 ± 0 . 016 

Linear Model /w ResNet Features 
√

L 0 . 659 ± 0 . 088 0 . 532 ± 0 . 025 0 . 490 ± 0 . 072 0 . 585 ± 0 . 050 0 . 560 ± 0 . 055 
Concat-1FC 

√
L 0 . 701 ± 0 . 128 0 . 569 ± 0 . 165 0 . 490 ± 0 . 110 0 . 630 ± 0 . 043 0 . 587 ± 0 . 045 

Concat-2FC 
√

NL 0 . 727 ± 0 . 098 0 . 440 ± 0 . 052 0 . 560 ± 0 . 117 0 . 633 ± 0 . 036 0 . 576 ± 0 . 036 
1FC-Concat-1FC 

√
NL 0 . 721 ± 0 . 083 0 . 501 ± 0 . 114 0 . 552 ± 0 . 118 0 . 632 ± 0 . 020 0 . 591 ± 0 . 024 

Duanmu et al. (2020) 
√

NL 0 . 774 ± 0 . 025 0 . 470 ± 0 . 070 0 . 490 ± 0 . 068 0 . 634 ± 0 . 015 0 . 578 ± 0 . 019 
FiLM ( Perez et al., 2018 ) 

√
NL 0 . 734 ± 0 . 101 0 . 410 ± 0 . 163 0 . 660 ± 0 . 160 0 . 652 ± 0 . 033 0 . 601 ± 0 . 036 

DAFT 
√

NL 0 . 767 ± 0 . 080 0 . 449 ± 0 . 154 0 . 651 ± 0 . 144 0 . 642 ± 0 . 012 𝟎 . 𝟔𝟐𝟐 ± 𝟎 . 𝟎𝟒𝟒 

Table 4 

Predictive performance for the diagnosis task (micro- and macro-averaged F1 scores). We report the mean 

and standard deviation across five folds. Higher values are better. The use of data of each model is indicated 

in columns 2–3 (I = the use of image data; T = use of tabular data). L/NL denote the linearity of the model 

for the tabular data transform (linear/non-linear). 

Micro-averaged F1 score ↑ Macro-averaged F1 score ↑ 

I T Validation Testing Validation Testing 

Linear Model ✗ L 0 . 594 ± 0 . 014 0 . 583 ± 0 . 021 0 . 571 ± 0 . 020 0 . 557 ± 0 . 022 
ResNet 

√
✗ 0 . 561 ± 0 . 017 0 . 496 ± 0 . 031 0 . 549 ± 0 . 018 0 . 485 ± 0 . 025 

Linear Model /w ResNet Features 
√

L 0 . 603 ± 0 . 043 0 . 575 ± 0 . 054 0 . 588 ± 0 . 048 0 . 565 ± 0 . 052 
Concat-1FC 

√
L 0 . 636 ± 0 . 039 0 . 607 ± 0 . 045 0 . 629 ± 0 . 044 0 . 588 ± 0 . 049 

Concat-2FC 
√

NL 0 . 631 ± 0 . 029 0 . 579 ± 0 . 029 0 . 616 ± 0 . 031 0 . 567 ± 0 . 024 
1FC-Concat-1FC 

√
NL 0 . 636 ± 0 . 043 0 . 600 ± 0 . 034 0 . 623 ± 0 . 034 0 . 583 ± 0 . 027 

Duanmu et al. (2020) 
√

NL 0 . 651 ± 0 . 033 0 . 596 ± 0 . 020 0 . 628 ± 0 . 023 0 . 573 ± 0 . 021 
FiLM ( Perez et al., 2018 ) 

√
NL 0 . 636 ± 0 . 039 0 . 589 ± 0 . 037 0 . 620 ± 0 . 044 0 . 572 ± 0 . 034 

DAFT 
√

NL 0 . 637 ± 0 . 025 𝟎 . 𝟔𝟏𝟕 ± 𝟎 . 𝟎𝟒𝟎 0 . 619 ± 0 . 037 𝟎 . 𝟔𝟎𝟎 ± 𝟎 . 𝟎𝟒𝟓 

Table 5 

Predictive performance for the time-to-dementia task. We report the mean and standard deviation across 

five folds. For the concordance index, higher values are better. For the integrated Brier score, lower values 

are better. The use of data of each model is indicated in columns 2–3 (I = the use of image data; T = use 

of tabular data). L/NL denote the linearity of the model for the tabular data transform (linear/non-linear). 

Concordance index ↑ Integrated brier score ↓

I T Validation Testing Validation Testing 

Kaplan–Meier ✗ ✗ N/A N/A 0 . 144 ± 0 . 015 0 . 148 ± 0 . 007 
Linear Model ✗ L 0 . 726 ± 0 . 040 0 . 719 ± 0 . 077 0 . 120 ± 0 . 012 𝟎 . 𝟏𝟐𝟐 ± 𝟎 . 𝟎𝟏𝟑 
ResNet 

√
✗ 0 . 669 ± 0 . 032 0 . 599 ± 0 . 054 0 . 137 ± 0 . 010 0 . 145 ± 0 . 013 

Linear Model /w ResNet Features 
√

L 0 . 743 ± 0 . 026 0 . 693 ± 0 . 044 0 . 133 ± 0 . 021 0 . 135 ± 0 . 011 
Concat-1FC 

√
L 0 . 755 ± 0 . 025 0 . 729 ± 0 . 086 0 . 116 ± 0 . 013 𝟎 . 𝟏𝟐𝟐 ± 𝟎 . 𝟎𝟏𝟏 

Concat-2FC 
√

NL 0 . 769 ± 0 . 026 0 . 725 ± 0 . 039 0 . 119 ± 0 . 015 0 . 130 ± 0 . 011 
1FC-Concat-1FC 

√
NL 0 . 759 ± 0 . 035 0 . 723 ± 0 . 056 0 . 120 ± 0 . 017 0 . 125 ± 0 . 008 

Duanmu et al. (2020) 
√

NL 0 . 733 ± 0 . 031 0 . 706 ± 0 . 086 0 . 125 ± 0 . 014 0 . 128 ± 0 . 017 
FiLM ( Perez et al., 2018 ) 

√
NL 0 . 750 ± 0 . 025 0 . 712 ± 0 . 060 0 . 121 ± 0 . 014 0 . 131 ± 0 . 022 

DAFT 
√

NL 0 . 753 ± 0 . 024 𝟎 . 𝟕𝟒𝟖 ± 𝟎 . 𝟎𝟒𝟓 0 . 129 ± 0 . 023 𝟎 . 𝟏𝟐𝟐 ± 𝟎 . 𝟎𝟏𝟓 
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Table 6 

Confusion matrix across all test sets for the diagnosis task for DAFT. 

Numbers in brackets denote the change relative to the FiLM-based net- 

work. 

Predicted 

CN MCI AD 

Actual CN 414 ( + 18) 107 ( − 10) 19 ( − 8) 

MCI 164 ( + 9) 242 ( + 22) 132 ( − 31) 

AD 22 ( + 6) 70 ( − 3) 171 ( − 3) 

D  

l  

A  
nd Concat-2FC with respect to micro- and macro-averaged F1 scores.

he FiLM-based model, which scales and shifts feature maps only based

n the tabular data, is the best performing baseline model, but merely

chieves a 0.011 higher mean bACC compared to the concatenation-

ased networks. While it is the network with the highest TPF AD , the

lass with the lowest frequency, it performs below average for the F1

cores. In contrast, the proposed DAFT network outperforms all compet-

ng methods by a large margin of at least +0.021 bACC, +0.01 micro-

nd +0.012 and macro-averaged F1 score. The performance drop from

alidation to test set ( − 0.02 bACC, − 0.02 micro- and − 0.019 macro-

veraged F1 score, − 0.005 c -index, − 0.007 IBS) is the lowest compared

o other deep learned-based models, which highlights the generalizabil-

ty of DAFT. 

Table 6 depicts the confusion matrix of DAFT and compares it to the

unner-up FiLM-based network. It shows that the improvement due to
6 
AFT can be attributed to better identifying the MCI cohort. In particu-

ar, DAFT reduces the amount of MCI patients that are misclassified as

D by 19% (31 patients), and CN patients misclassified as MCI or AD
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Table 7 

Results of the ablation study for DAFT. Values are mean test set 

performance and standard deviation across five cross-validation 

folds. Note that our proposed configuration (last row) uses DAFT 

before the first convolution with shift and scale predicted dy- 

namically and the identity function 𝜎( 𝑥 ) = 𝑥 . 

Configuration Balanced accuracy Concordance index 

Before Last ResBlock 0 . 598 ± 0 . 038 0 . 749 ± 0 . 052 
Before Identity-Conv 0 . 616 ± 0 . 018 0 . 745 ± 0 . 036 
Before 1st ReLU 0 . 622 ± 0 . 024 0 . 713 ± 0 . 085 
Before 2nd Conv 0 . 612 ± 0 . 034 0 . 759 ± 0 . 052 
𝜶𝑖 = 𝟏 0 . 581 ± 0 . 053 0 . 743 ± 0 . 015 
𝜷 𝑖 = 𝟎 0 . 609 ± 0 . 024 0 . 746 ± 0 . 057 
𝜎( 𝑥 ) = sigmoid ( 𝑥 ) 0 . 600 ± 0 . 025 0 . 756 ± 0 . 064 
𝜎( 𝑥 ) = tanh ( 𝑥 ) 0 . 600 ± 0 . 025 0 . 770 ± 0 . 047 
Proposed 0 . 622 ± 0 . 044 0 . 748 ± 0 . 045 
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y 12.5% (18 patients). This is also evident from the increase in TPF MCI 

y 0.033, and in TPF CN by 0.039. 

In the time-to-dementia task, the unimodal baselines show the same

attern as in the diagnosis task: the linear model (using only tabular

ata) is outperforming the ResNet (0.12 lower mean c -index), and the

inear model with ResNet features (0.026 lower mean c -index). For the

oncatenation-based networks, the improvement in c -index is at most

.01, which, when taking the variance into account, must be considered

nsignificant. As above, the network by Duanmu et al. (2020) is per-

orming worst and is even outperformed by the linear model (+0.013

ean c -index). In contrast to the diagnosis task, the FiLM-based net-

ork is falling behind the concatenation-based networks on the time-to-

ementia task ( − 0.013 mean c -index). Here, the best performing base-

ine model is Concat1-FC. Overall, the proposed DAFT is outperforming

ll models by at least +0.019 c -index. This demonstrates that a two-way

xchange of information between the image and tabular information,

hich only DAFT facilitates, is crucial for time-to-dementia prediction. 

Next, we focus on the IBS, which measures a model’s discriminative

bility and calibration. Here, we include the Kaplan–Meier estimator,

hich estimates the time to dementia solely based on observed conver-

ion times without considering tabular or image information. Therefore,

t can be considered as worst-case upper bound on the IBS ( Graf et al.,

999 ). The IBS indicates that many deep learning models are poorly

alibrated. In particular, the ResNet performs very poorly with an IBS

ust 0.003 below that of the Kaplan–Meier estimator. The linear model

chieved an IBS that is clearly below that of the Kaplan–Meier estimator.

hile the concatenation-based networks outperform the linear model in

erms of c -index, only Concat-1FC can match it in terms of IBS, which

ndicates that Concat-2FC and 1FC-Concat-1FC sacrifice calibration for

iscriminative ability. In contrast, our proposed DAFT outperforms the

inear model in terms of c -index (+0.029), while still matching the lin-

ar model’s IBS of 0.122. 

In summary, the results on the predictive performance demonstrate

hat concatenation-based approaches are unable to fully utilize the com-

lementary nature of image and tabular information. Notably, we ob-

erved that integrating tabular data at different stages of image represen-

ation within a CNN, as done by Duanmu et al. (2020) , can severely dete-

iorate performance. The sole approach, that excels at integrating image

nd tabular information for both tasks is the proposed DAFT network:

AFT outperforms all competing methods by a large margin (+0.021

ACC, +0.019 c -index). 

.2. Ablation study 

To justify various design choices of the proposed DAFT, we perform

n extensive ablation study on the diagnosis and time-to-dementia tasks.

irst, we evaluate the location of the DAFT within the last ResBlock,

econd, the activation function 𝜎 for the scale 𝛼𝑖,𝑐 , and third, the impact

f dynamically scaling and/or shifting each feature map. As proposed

n Perez et al. (2018) , parameters of batch normalization layers imme-

iately preceding the DAFT are turned off. Results are summarized in

able 7 . 

They demonstrate that the DAFT works well regardless of its loca-

ion, indicating a strong robustness against this design choice. Most no-

ably, the DAFT outperforms all other models (with the exception of

iLM) on the diagnosis task, regardless of its location. For the progres-

ion task, the performance only decreases when placing DAFT before the

rst ReLU. Disabling either 𝜶 or 𝜷 results in a decrease for both task of at

east 0.013 bACC and 0.002 c -index, respectively. For the diagnosis task,

e can observe that scaling seems to be more important than shifting.

n contrast, for the progression task, the capacity of the DAFT appears to

e sufficient if either scaling or shifting is enabled, as the performance

rop is within the variance of those configurations. Finally, applying

 non-linear activation function 𝜎 to the scale diminishes the diagnosis

erformance, but increases the mean c -index for progression analysis for

oth activation functions sigmoid and tanh. With just two configurations
7 
eing outperformed by concatenation-based networks, we can conclude

hat the DAFT is robust with respect to the design choices. Moreover,

ptimizing the configuration of the DAFT to a particular task can yield

urther performance gains over concatenation-based approaches. 

.3. Impact of scale and shift 

To evaluate the benefits of dynamically scaling and shifting feature

aps, rather than scaling/shifting by a (learned) constant, we perform

 test time ablation study. First, we train a standard ResNet on the diag-

osis tasks until convergence. Next, we initialize the weights of a ResNet

ith the FiLM or DAFT block with the weights of that network. Finally,

e train both models for 20 epochs (with early stopping based on the

alidation set performance), but fix all weights with the exception of

he last ResBlock and the FC layer. We note that this setup is important,

ecause when learning the networks from scratch, the distribution over

mage feature maps that are the input to the FiLM or DAFT block could

iffer. By fixing the weights of layers preceding those blocks, the input

eature maps fed to the FiLM and DAFT block are identical, resulting in

 meaningful analysis of the behaviors of FiLM and DAFT. 

Fig. 2 depicts the values for 𝛼𝑖,𝑐 and 𝛽𝑖,𝑐 for all patients and feature

aps. From this figure, it is evident that 𝜶 and 𝜷 values produced by

iLM are often centered around zero, whereas the values produced by

he DAFT are always consistently different from zero (except for 𝑐 = 9 ).
oreover, we can observe that the 𝜶 and 𝜷 values due to the DAFT block

re more concentrated and evenly scattered in both dimensions, whereas

he values due to FiLM are often characterized by a high variance in one

imension and low variance in the other dimension (e.g. Var ( 𝛽) ≫ Var ( 𝛼)
or 𝑐 = 4 ). 

Next, we replace either 𝜶 or 𝜷 with its mean across the training set

o remove the respective conditioning information. The results in Fig. 3

uggest that the DAFT achieves a more effective integration of tabular

nformation by shifting feature maps via 𝜷, as indicated by the large

erformance loss when fixing 𝜷 compared to 𝜶. In contrast, FiLM relies

n both scaling and shifting and shows an overall decrease of perfor-

ance irrespective of which vector is constrained. Moreover, our third

est time ablation experiments supports this hypothesis, were we add

aussian noise to 𝜶 or 𝜷. Fig. 4 shows that DAFT is more sensitive to

istortions of 𝜷, while in FiLM the performance loss is equal for the two.

dditionally, FiLM’s performance deteriorates more quickly than that of

AFT as the variance 𝜎 of the noise increases, which highlights DAFT’s

verall robustness. 

.4. Impact of tabular data 

Next, we want to analyze the marginal contribution individual tabu-

ar features have on the overall performance in the proposed DAFT net-

ork. Let 𝐈 denote the 3D image information, 𝐱 the tabular information,



T.N. Wolf, S. Pölsterl and C. Wachinger NeuroImage 260 (2022) 119505 

Fig. 2. Scatter plots for scale 𝛼𝑖,𝑐 and shift 𝛽𝑖,𝑐 for all 𝐶 = 16 feature 

maps for one model on the diagnosis task. Each sample 𝑖 in the dataset 

is represented by a cross in each plot. The clusters of DAFT are com- 

pact and clearly tend towards non-zero values for each feature map. 

In contrast, for FiLM 𝛼𝑖,𝑐 and 𝛽𝑖,𝑐 mostly remain close to the origin. 

Fig. 3. Performance loss when setting either the scale 𝜶 or the shift 𝜷 to the 

respective mean values in the training set. 
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m  
 the actual label, and 𝑀̂ ( 𝐈 , 𝐱) the predicted class label by the DAFT net-

ork. We want to estimate the marginal contribution a single feature 𝑗 ∈
1 , … , 𝑃 } =  has on the balanced accuracy bACC ({( 𝑦 𝑖 , 𝑀̂ ( 𝐈 𝑖 , 𝐱 𝑖 ))} 𝑛 𝑖 =1 ) .
his can be cast as a problem from cooperative game theory, for which

he Shapley Value is a suitable estimator ( Covert et al., 2020; Shapley,
8 
953 ). The Shapley Value 𝜙𝑗 estimates the contribution of feature 𝑗 by

arginalizing over all possible subsets  ⊆  : 

𝑗 = 

1 | |! ∑
⊆∖{ 𝑗} 

||! ⋅ ( | | − || − 1)!( bACC 

∪{ 𝑗} − bACC 

 ) , (4)

here bACC 

 denotes the test set balanced accuracy of a model re-

tricted to the features in the subset . The Shapley Values have the de-

irable property that they sum to the total improvement over the model

sing no tabular information: 
∑𝑃 

𝑗=1 𝜙𝑗 = bACC 

 − bACC 

∅. Hence, a neg-

tive Shapley Value would indicate that ignoring that feature would

mprove the overall performance. Note that the sum in (4) scales ex-

onential in the number of tabular features, therefore we do not train

 new model for each subset , but use a single pre-trained network

here we mask the weights in the first FC layer of DAFT correspond-

ng to the features in . This is also referred to as the Baseline Shapley

pproach ( Sundararajan and Najmi, 2020 ). 

Fig. 5 illustrates the estimated Shapley Values for the five DAFT-

ased models on the diagnosis task. We can observe that the three most

mportant features across all folds are FDG-PET, T-tau, and A 𝛽42 . This re-

ult is reassuring as reduction of metabolic activity in cortical regions, as

easured by FDG-PET, and high concentrations of CSF total tau and low
Fig. 4. Performance loss when distorting 𝜶 or 𝜷 with Gaussian noise. 

Lines represent the mean, shaded areas the standard deviation over 5 

folds. 
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Fig. 5. Contribution of tabular features to the test set balanced accuracy of DAFT-based networks on the diagnosis task. The Shapley Value ( 𝑦 -axis) estimates the 

marginal contribution a single feature has on the balanced accuracy (see (4) for details). Positive (negative) Shapley Values indicate that a feature contributes to an 

increase (decrease) in performance. 

Table 8 

Predictive performance for the diagnosis task (balanced accuracy) of the repeatability study 

on ADNI and AIBL with a reduced set of tabular features. We report the mean and standard 

deviation across five folds and 15 random initializations of model weights. Higher values are 

better. The use of data of each model is indicated in columns 2–3 (I = the use of image data; 

T = use of tabular data). L/NL denote the linearity of the model for the tabular data transform 

(linear/non-linear). 

Balanced accuracy ↑ 

ADNI AIBL 

I T Validation Testing Hold-out 

Linear Model ✗ L 0.428 ± 0.037 0.417 ± 0.033 0.417 ± 0.009 

ResNet 
√

✗ 0.554 ± 0.024 0.514 ± 0.036 0.493 ± 0.021 

Linear Model /w ResNet Features 
√

L 0.547 ± 0.039 0.536 ± 0.039 0.510 ± 0.021 

Concat-1FC 
√

L 0.577 ± 0.024 0.534 ± 0.041 0.515 ± 0.029 

Concat-2FC 
√

NL 0.521 ± 0.109 0.491 ± 0.098 0.475 ± 0.084 

1FC-Concat-1FC 
√

NL 0.570 ± 0.024 0.534 ± 0.042 0.515 ± 0.025 

Duanmu et al. (2020) 
√

NL 0.546 ± 0.052 0.513 ± 0.042 0.510 ± 0.039 

FiLM ( Perez et al., 2018 ) 
√

NL 0.579 ± 0.022 0.541 ± 0.036 0.523 ± 0.028 

DAFT 
√

NL 0.581 ± 0.025 𝟎 . 𝟓𝟓𝟎 ± 𝟎 . 𝟎𝟑𝟑 𝟎 . 𝟓𝟐𝟕 ± 𝟎 . 𝟎𝟐𝟒 
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oncentrations of CSF A 𝛽42 are well-known markers for AD ( Blennow

t al., 2001; Minoshima et al., 1997 ). 

.5. Generalization on AIBL and repeatability study 

To validate our findings on hold-out data, we evaluate all models

rained on ADNI on data from The Australian Imaging, Biomarker &

ifestyle Flagship Study of Ageing (AIBL; Ellis et al., 2009 ). As pointed

ut in Wen et al. (2020) , models trained on ADNI typically do not gen-

ralize well on AIBL due deviating study protocols. In this experiment,

e retrain all models for disease classification on a subset of tabular fea-

ures, that are available for both ADNI and AIBL (age, gender, ApoE4

nd a variable indicating if ApoE4 is missing). We follow the same

re-processing pipeline as for ADNI. Dataset statistics can be found in

able 1 , third row. Additionally, we re-run every experiment, i.e. each

yper-parameter configuration, with 15 different random initializations

f network weights, resulting in 225 trained models per test set. The

esults are summarized in Table 8 . 

DAFT performs best on ADNI and AIBL with respect to the reported

ACC score. The gap to the runner-up model FiLM ( Perez et al., 2018 )

s +0.009 bACC on ADNI and +0.004 bACC on AIBL. Compared to

he initial experiment, the ranking of all models remains effectively the

ame, i.e. concatenation-based methods are outperformed by methods

ased on feature-merging on a channel-level (except for Duanmu et al.,

020 ). All models show a decrease in performance, and Concat-2FC per-

orms worse than the unimodal ResNet and the Linear Model /w ResNet

eatures. The poor performance of Concat-2FC is due to training oc-

asionally converging to a point at which the model only predicted one

lass. This highlights the importance of our work to promote robust deep

earning architectures for heterogeneous feature fusion. 
9 
A t -test with Benjamini-Hochberg correction between DAFT and all

ompeting methods on the test performance on ADNI and AIBL results

n corrected p -values smaller than 0.018, except for FiLM: the corrected

 -values are 0.12 and 0.297 on ADNI and AIBl respectively, strength-

ning our claim that feature-merging on a channel-level is superior to

oncatenation-based approaches. Compared to benchmark methods, the

erformance drop of DAFT compared to training on all available tab-

lar data and the generalization of ADNI to AIBL is high (compare

ables 3 and 8 ). However, the only AD-specific biomarker in this exper-

ment is ApoE4 and, thus, disease specific information readily available

n the tabular data is limited. This manifests in the poor performance of

he Linear Model. DAFT outperforms all other approaches, even across

andom initialization of network weights, and has the biggest relative

ncrease in performance when meaningful tabular biomarkers are pro-

ided. This indicates that DAFT is able to incorporate tabular biomarkers

ore effectively than competing methods. 

.6. Generalization to other architectures 

To validate our hypothesis that DAFT can be applied to any CNN to

use image and tabular features, we change the backbone of all models

o a ConvNet, which is essentially the ResNet in Fig. 1 without skip

onnections in ResBlocks. Again, we carry out a hyper-parameter search

ith the same search space as in previous experiments (see Section 3.2 ).

he resulting bACC can be found in Table 9 . 

As in our main experiment, the performance of the Linear Model

ith ConvNet features increases marginally over the unimodal ConvNet,

howing the existence of redundant high-level image and tabular fea-

ures. DAFT outperforms all other models by more than +0.013 bACC,

onfirming its superior ability to integrate tabular data independent of

he network’s backbone architecture. 
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Table 9 

Predictive performance for the diagnosis task (balanced accuracy) with a Con- 

vNet as the backbone. We report the mean and standard deviation across five 

folds. Higher values are better. The use of data of each model is indicated in 

columns 2–3 (I = the use of image data; T = use of tabular data). L/NL denote 

the linearity of the model for the tabular data transform (linear/non-linear). 

Balanced accuracy ↑ 

I T Validation Testing 

Linear Model ✗ L 0 . 628 ± 0 . 034 0 . 582 ± 0 . 044 
ConvNet 

√
✗ 0 . 587 ± 0 . 022 0 . 519 ± 0 . 027 

Linear Model /w ConvNet Features 
√

L 0 . 594 ± 0 . 018 0 . 534 ± 0 . 031 
Concat-1FC 

√
L 0 . 639 ± 0 . 011 0 . 604 ± 0 . 039 

Concat-2FC 
√

NL 0 . 652 ± 0 . 026 0 . 580 ± 0 . 018 
1FC-Concat-1FC 

√
NL 0 . 635 ± 0 . 030 0 . 579 ± 0 . 033 

Duanmu et al. (2020) 
√

NL 0 . 633 ± 0 . 032 0 . 571 ± 0 . 033 
FiLM ( Perez et al., 2018 ) 

√
NL 0 . 644 ± 0 . 023 0 . 604 ± 0 . 018 

DAFT 
√

NL 0 . 643 ± 0 . 021 𝟎 . 𝟔𝟏𝟕 ± 𝟎 . 𝟎𝟏𝟖 

Table 10 

Runtime comparison. Training time is reported 

per epoch in seconds, inference time in millisec- 

onds per forward pass. Times are reported for 

models with the ResNet backbone. 

Model Training Inference 

ResNet 8.91 s 1.80 ms 

Concat1FC 8.94 s 1.91 ms 

Concat2FC 8.92 s 1.97 ms 

1FC-Concat-1FC 8.95 s 1.95 ms 

Duanmu et al. (2020) 9.03 s 2.15 ms 

FiLM ( Perez et al., 2018 ) 8.74 s 2.02 ms 

DAFT 8.96 s 2.15 ms 
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.7. Runtime comparison 

Since the models differ in terms of architecture and number of pa-

ameters (see Table 2 ), we further evaluated how these differences affect

raining and inference time. For each network, we measured the training

ime for one epoch of training, and for inference the time required for

 forward pass of a batch of 256 samples (excluding time for I/O). All

easures were carried out using PyTorch 1.5.1 and an NVIDIA GeForce

TX 1080 Ti graphics card. 

Unsurprisingly, fully fitting a linear model can be carried out very

fficiently (235 ms), whereas training one of the deep neural networks

equires between 8.74 and 9.03 s per epoch (see Table 10 ). The wall

ime during inference scales with the number of weights and lies be-

ween 1.8 and 2.15 ms. While the differences for training are negligible,

he differences in inference time are relatively high: With DAFT the in-

erence time increases about 19% relative to ResNet. Nevertheless, for

ractical purposes this difference will remain unnoticeable. Therefore,

e can conclude that the performance increase due to DAFT comes only

t a minor increase in runtime. 

. Conclusion 

The underlying changes that cause dementia can only be partially

aptured by brain MRI. While many previous deep learning methods fo-

us purely on MRI, we have demonstrated that information on patient

emographics, laboratory measurements, and genetics, all commonly

ncoded as tabular data, are required to put brain MRI into the right

ontext and improve prediction accuracy. Other methods, that incorpo-

ate tabular data and brain MRI in deep learning frameworks, typically

mplement a naive concatenation mechanism, resulting in minimal ex-

hange of information between the image- and tabular-related branches

f those networks. 

We proposed the Dynamic Affine Feature Map Transform (DAFT)

o facilitate an improved two-way exchange of information between
10 
ources within a single CNN. DAFT is able to effectively incite or re-

ress high-level concepts learned from a 3D image by conditioning fea-

ure maps of a convolutional layer on both image and tabular infor-

ation. We compared DAFT against five state-of-the-art approaches on

lzheimer’s disease diagnosis and time-to-dementia prediction. Our re-

ults showed that DAFT outperformed all previous deep learning ap-

roaches that combine image and tabular data by a large margin. Our

xperiments show that the features extracted by a CNN are, indeed, par-

ially redundant to the discriminative tabular features readily available

n clinical practice. Moreover, our exhaustive ablation study, general-

zation experiments, and repeatability study indicate that the DAFT is

enerally robust with respect to design choices. As a general concept to

ntegrating image and tabular data, DAFT is applicable to many CNN

rchitectures and medical data analysis tasks outside of dementia too. 
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